A novel approach of gene therapy

Exosomes to amend disease processes: Researchers have established a novel gene therapy method by converting human cells into bulk creators of mini-sized nano-particles poised of hereditary material that has the capability to alter disease progressions. The technique uses exosomes; that are bio-friendly transporters of beneficial ingredients that make a way for cells to connect with other cells. This technique depends on patented skill that stimulates contributed adult stem cells to produce millions of exosomes that work as nanocarriers comprising a drug. When these exosomes are inserted into the blood, they are well aware of where to target, even though it is the brain. These exosomes collected from adult human cells, functions as nano-carriers containing a drug.

Application of tissue Nano transfection : In 2017, James Lee, professor emeritus and colleagues at the Ohio State University made impressions with news broadcast of tissue nano transfection (TNT); a regenerative medicine discovery. This technique is based on a nanotechnology-based piece to transport biological load straight into the skin, and changes adult cells into the desired cells. This was also adapted by Zhaogang Yang, a postdoctoral researcher at the University of Texas Southwestern Medical Center, termed cellular nanoporation.

The reason exosomes are designated to avert diseases: In in-vitro conditions, the artificial DNA force-fed to giver cells is imitated into a different fragment containing messenger RNA that holds the commands required to yield a definite protein. Every exosome foam comprising messenger RNA is converted into a nanoparticle prepared for transference, with no blood-brain barrier to worry about. Lee said, “We don’t want the exosomes to go to the wrong place. They’re programmed not only to kill cancer cells but to know where to go to find the cancer cells. You don’t want to kill the good guys.”

Light of Hope in the therapy: The best part for this is that they exosomes do pass the blood-brain barrier; maximum drugs can’t. An additional benefit that it occurs is zero toxicity; they do not induce an immune response. This drug-delivery method has the potential for the imminent uses in neurological ailments such as Alzheimer’s and Parkinson’s disease. Expectantly, someday this can probably be used to treat the deadly diseases.

World’s first ‘reprogrammed’ stem cells to repair cornea

In Japan, scientists for the first time have treated a damaged cornea by using induced pluripotent stem cells (iPS) which is reprogrammed from adult cells.

It is a process that converts the cells into embryonic-like cells which can further develop into any type of human cells such as nerve, pancreatic, liver, and corneal cells. While iPS cells have great potential to treat many conditions, they are yet to make from just testing in laboratories to practicing in clinics.

Reference Link: https://www.medicalnewstoday.com/articles/326243.php